TwinSolar[®]: PV- and Thermo- Solarmodul in ONE

Reenergy AG Samstagernstr. 55 8832 Wollerau Switzerland info@reenergyag.com www.reenergyag.com

The TwinSolar® Technology allows upgrading any PV-module with a thermal collector

1) General Information

PV -Front Site

Thermo-Back Side

The TwinSolar™ is a standardized PV Hybrid-Module, using serial solar panels proven in many years of operation. The PV-panels are extended whit a thermal collector, placed on the back side of the panel — see pictures left. The Twinsolar - in operation since 5 years - is simple, robust and economical.

The main Twinsolar™ APPLICATION is the realization of electrically AND thermal energy plants:

- for PV-production of electrically energy using the PV-panel;
- for production of thermal energy necessary for tapwater during summer and heating during winter, using the thermal panel-part.

The DOUBLE USE of your roof surface allows:

- INCREASING of the energy production from the roof surface and
 - MAXIMAZING of the benefits from the PV installation;
 - REDUCING of the specifically COSTS during the installation, operation and service of the plant.

The COST-EFFICEINCY Twinsolar™ is based on:

- REDUCING of the installation time, this time is only 20% higher as the installation of PV-panels, because of the one connector technique of the hydraulic part of the Twinsolar™
- the efficiency of the PV-part of the panel during the summer season increases up to 20% because of the "cooling" of the solar panels circulation of the cooling liquid.

TwinSolar®

PV- and Thermo- Solarmodul in ONE

2) Technical Characteristics of TwinSolar® PVT-22-2.0

Technical Characteristics		
Cell	Polycrystalline Si solar cells	
No. of Cells & Connections	60 in series with bypass diodes	
Dimensions (LxWxH)	1640 x 994 x 46 mm	
Weight (PV + Thermal)	21 kg + 8 kg	
Type of Output Terminal	Lead Wire with MC Connector	
Cooling water connection	G 1/4	

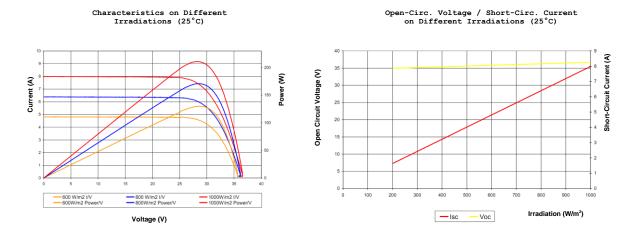
Ambient Conditions		
Parameter	Rating	
Operating Temp.	-30 +85 °C	
Storage Temp.	-40 +85 °C	
Storage Humidity	up to 90 %	

Electrical Characteristics PV			
Parameter	Symbol	Typical	
Open Circuit Voltage	V _{oc}	36.8 V	
Maximum Power Voltage	V_{mp}	29.4 V	
Short Circuit Current	I _{sc}	8 A	
Maximum Power Current	I_{mp}	7.5 A	
Nominal Power	P_{m}	220 W (± 3%)	
Module Efficiency	η_{m}	13.5 %	
Maximum System Voltage	V_{max}	1000 V	

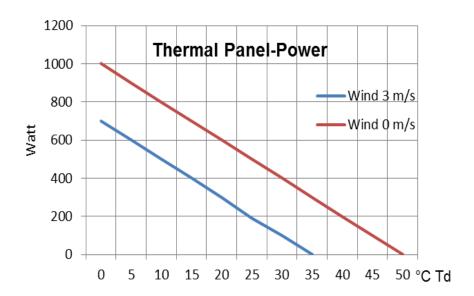
Temperature Coefficients PV		
α P_{m} T-coef. Power	- 0.43 [%] / _℃	
α I_{sc} T-coef. Current	+ 0.05 [%] / _{°C}	
α V_{oc} T-coef. Voltage	- 0.35 [%] / _{°C}	

Thermal Characteristics Th-Part*					
Parameter	Symbol	1 module	5 modules in series		
Thermal Power*	P _{th}	600 W *	3000 W *		
Dyn. Pressure	P_{r}	0.15 bar at 1.2 ltr/ _{min}	0.8 bar at 1.2 ltr/min		
Test-Pressure	P_{t}	10 bar			
Flow-rate range	V_{F}	$0.1^{lt}/_{min}$ to $2^{ltr}/_{min}$			
Cooling Liquid Water / Glycol	Cl	60 % / 40 % (-30 °C)			

*Data Sheet Conditions::


Ambient Temperature Ta = 25° C; solar Irradiation = $1 \text{ kW/m}^2 \text{ AM } 1.5$, wind speed 3 m/s, gape between the ptched roof and panel = 10 cm; Temperature Difference Td between ambient Temperature Ta and cooling liquid Temperature Tc is equal to Td = 5° C

PV- and Thermo- Solarmodul in ONE


2.1. PV-Characteristics TwinSolar® PVT-22-2

The characteristics of the PV-Part is equivalent whit the parameters of the source PV-panel. The integration of the thermal part INCREASES the power output of the PV-panel during high environment temperatures Ta and activated thermal part up to 20%. The lifetime of the PV-panel INCREASES, because of the reduction of the medium temperature Tm of the panel during operation.

2.2. Thermal Characteristics of TwinSolar® PVT-22-2.

The thermal output power of the panel decreases if the cooling medium T° (Tc) get hotter and the difference Td between medium temperature Tc and ambient temperature Ta increases: Td = Tc – Ta.

T°d -difference Tc-Ta: Tc: Cooling medium - Ta: Ambient

Fig.: Panel Power

PV- and Thermo- Solarmodul in ONE

2.3. Calculation of the thermal power output (example)

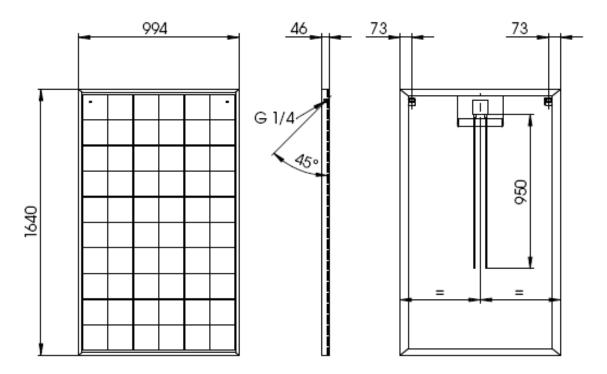
The Calculation of the thermal power uses the Table "Panel-Power" (see page 3).

Conditions for the Calculations:

Ta ambient Ta = 30°C Irradiation = 1000 W/m² Wind = 0 m/s 5xTwinsolar Panel serial connected to a string.

a) Input T°: first Panel Tc1 = 30°C

Td1 = Tc1(30°C) - Ta(30°C) = 0°C


from Fig. "Panel Power": Panel Power1 Pp1 = 1000W

b) Output T°: last Panel Tc5 = 55°C Td = Tc5(55°C)- Ta(30°C)=25°C from Fig. "Panel Power": Panel Power Pp5 = 400W

c) Medium panel power: Ptm = 0.5*(400W+1000W) = 700W

d) RESULT: Thermal string power: Pths = 5*Ptm = 3500 W

3) TwinSolar® PVT-22-2.0 Dimensions (all dimensions in mm)

For more support: Reenergy AG Samstagernstr. 55 8832 Wollerau Switzerland info@reenergyag.com and www.reenergyag.com